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PREFACE

This miscellaneous paper presents a review of finite element procedures for earth
retaining structures. This study is part of the research project entitled “Soil-Structure
Interaction Study of Walls” sponsored by the Civil Works Research and Development
Directorate, Headquarters, US Army Corps of Engineers (HQUSACE), under the Struc-
tural Engineering Research Program. Technical Monitor for the project is Mr. Donald
Dressler (HQUSACE).

The work was performed at the US Army Engineer Waterways Experiment Station
(WES) by Dr. Robert Ebeling, Scientific and Engineering Applications Center, Com-
puter-Aided Engineering Division (CAED), Information Technology Laboratory (ITL).
This miscellaneous paper was prepared by Dr. Robert Ebeling. This study is part of a
general investigation on soil-structure interaction of walls under the direction of
Mr. Reed Mosher, CAED. All work was accomplished under the general supervision of
Dr. Edward Middleton, Chief, CAED, and Dr. N. Radhakrishnan, Chief, ITL.

COL Larry B. Fulton, EN, is Commander and Director of WES. Dr Robert W.
Whalin is the Technical Director.
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Non-SI units of measurement used in this report can be converted to SI {(metric) units

as follows:

Multiply By To Obtain
feet 0.3048 metres
inches 2.54 ceniimetres

1.609347 kilometres

miles (US statute)
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REVIEW OF FINITE ELEMENT PROCEDURES
FOR EARTH RETAINING STRUCTURES

PARTI; INTRODUCTION
1. The purpose of this paper is to present a review of previous work in which the
fmlte elemem method was used 1o analyze the sml=structure interaction of earth retain-

1

earth retaining structures and used to calculate stresses and movements for problems in-
volving a wide variety of boundary and loading conditions. Some of the modeling fea-

tures to be considered in a successful soil-structure interaction analysis are summarized
in this paper, along with the results from select soil-structure interaction analyses.

1!“' )f1 nn
Avariv

1%
o
('1
v
v
y;
v
B
=
j
o
&
[a]
—
o)l
o
[¢]
L
=
=
(L]
=
[
12
o
o
E)
2 o
oo
=
=
-
:
|7
v
qa
v
=
o]
R 7S
5 @
o
Q
b
- =
- Tt
o
[¢]
P
=
=
=
.
G
=
-
B
=
¢
a
Q

" _ 1

actual construction process as clos 1y as possible and the inclusion of a nonlinear stress-
strain soil model. Application of this procedure to soil-structure interaction analyses
has led to the additional requirements that the soil backfill and interface elements be in-
corporated within the finite element mesh. The first section of this report describes the
procedures used in the calculation of earth pressures and displacements using the finite

element method of analysis.

3. In recent studies analytical models using the finite element method of analysis
have been applied to earth retaining structures which are loaded so heavily that a gap
develops along the interface between the base of a structure and its foundation. Two
analytical procedures used to model the loss of contact between a structure and its foun-

dation are summarized in the second half of this paper.
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4. Procedures for the finite element analysis of conventional, stable earth retaining
structures are well established. They have been successfully applied to the evaluation
of the soil-structure interaction for a variety of earth retaining structures during the past
20 years, including U-frame locks, gravity walls, and basement walls. This section sum-
marizes the key aspects of these types of analyses.

Study by Clough and Duncan (1969)

N

5. One of the earliest studies was performed by Clough and Duncan (1969) in their
analysis of the two reinforced concrete U-frame locks at Port Allen and Old River that
had been extensively instrumented. A cross section of Port Allen lock is shown in Fig-
ure la. In these studies, the soil backfill was represented in the finite element mesh as
shown in Figure 1b. During preliminary analyses, it was found that a gravity turn-on
analysis was insufficient for the analysis of soil-structure interaction problems. The
authors recognized that the analytical procedure used must take into account the non-
linear stress-strain response of soils during loading. In addition, it was shown in these
studies that the best agreement is obtained when the actual construction process was
simulated as closely as possible. During the course of this study, the authors developed
what is referred to as a backfill placement analysis where the loads exerted by the back-
fill on the lock wall were generated automatically during simulated placement of back-
fill behind the wall. This procedure involved the use of incremental finite element

analysis with nonlinear, stress-dependent, stress-strain behavior for the soil. Linear
elastic behavior was assumed for the concrete lock wall.

6. An additional analytical feature used in the Port Allen and Old River study was
the inclusion of the Goodman, Taylor, and Brekke (1968) interface elements between
the concrete lock walls and the soil backfill. In a traditional finite element analysis
using conventional elements, the interface between the backfill and the wall is con-
strained so that both move in the same direction and are of equal magnitude. In ac-
tuality, there is no such constraint on the backfill and wall. This constraint influences
both the resulting displacements and computed stresses within the wall and the backfill.
The presence of interface elements between the backfill and the wall allows the backfill

to move independent of the wall.

7. Clough and Duncan found that their developed procedures gave results in good
agreement with the results of the extensive instrumentation program for Port Allen lock
and OId River lock. Examples of the agreement between computed and measured dis-
placements and earth pressures for Port Allen lock are shown in Figures 2 and 3, respec-
tively. Seasonal changes were also able to be accounted for in the analyses, as shown
in Figure 4. During the winter the lock walls moved away from the backfill, while
during the summer the walls moved to displace the backfill. The changes in both the
measured and the computed earth pressures were in agreement and consistent with the
displacement of the wall. In addition, these changes explained a curious aspect in the
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ward, yet the soil pressures acting on the walls increased rather than decreased as intui-
3 e i lAd ennogec t Tha raciilete e tha fimita alansant analyucag chnwwad thaoe ¢ha
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t
increase in earth pressures was a result of the mass flow of the soil around the 1
shown in Figure 5.

8. In a 1971 study, Clough and Duncan showed that

ment procedures could be used to predict lateral earth pressures for conditions ranging
from an unmdving wall to limit conditions where the wall displaced enough to generate
active or passive earth pressures. A 10-ft*-high wall retaining a sand backfill and
founded on rock (Figure 6a) was used in this analysis. The corresponding finite ele-
ment mesh is shown in Figure 6b. Interface elements were placed between the wall-to-
soil interface and between the rock-to-soil interface. The computed relationships
between wall movements and the resultant horizontal earth pressure force, shown in Fig-

ure 7. were found to be in gnnd agreement with classical earth nresst
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__________________________ ng the construction 20-ft-high earth ining wall foun
on sm.d. Tue scquemlal construction and backfilling simulation, idealized in Figure 10,
was performed using the incremental, nonlinear finite element method of analysis
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eted by the end of the second increment and backfiiling was completed by
the end of the eighth increment. Interface elements were used along the wall-to-soil in-
terfaces and along the base of the wall. The calculated deflections shown in exag-
gerated scale in Figure 11 show that the wall tilted towards the backfill during
construction, rather than away from the backfill as classical earth pressure theories
(e.g., the theory for active earth pressures), would indicate. Careful examination of this
figure reveals that the wall moved and tilted forward relative to the backfill. This

resulted in earth pressure forces from the finite element analysis greater than those com-
puted using the classical earth pressure theory for an active stress state (Figure 12), but
less than at-rest values. Two contributing factors are the incorporation of the compres-
sibility of the foundation in the analysis and the non-uniform loading of the foundation

.

sands. Lastly, the results showed that a stabilizing shear force acting along the back of
the wall (referred to as a downdrag force) could develop during backfill placement
simply due to compression of the backfill soil under its own weight. This finding was
important in that prior to this it was believed that a downdrag force occurred only as a

* A table of factors for converting non-SI units of measurement to SI (metric) units is
presented on page 3.
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result of the movement of the wall away from the backfill in response to the earth 1

ings. In addition, the inclusion of interface elements along the material interf
regions within tue mesh allowed the sozl to settle durmg backdlhng while the wall
.......... Frnor tha lhnnl-£:11
movVea away rom tine 0ackiiu
Cérseles hy Dhatia A DAl 10
Siuay 0y piiauia ana paKkeer \1)89)

10. Bhatia and Bakeer (1989) performed a finite element analysis of a 10-m-high
instrumented experiment wall resting on a hinged base, shown in Figure 8a, that was
AAAAAAAAAAAAAAA wad Van: 1079 Thaie hagin finite alamaamt oo L 2
tested Dy NldlbUU, I\cnluuuu, ana Y agl iy 10). I'heir basic finite element mesh is

I a1l 1 £r11 1 .t .
1 and the wall

A series of analyses similar to the Clough and Duncan analyses described in paragraph 6
were conducted for the boundary conditions ranging from a wall with zero rotation to
the case where the crest of the wall was rotated 0.016 m. There is reasonable agree-
ment between the measured and predicted earth pressures, as shown in Figure 9, par-
ticularly for the rotated wall case. ‘

Study by Kulhawy (1974)

11. Kulhawy (1974) performed analyﬁes of a proposed 104-ft-high gravity earth
retaining wall shown in Figure 13a. The wall, which was to be founded on rock, was
analvzed using the Duncan and Clou,qh backfill placement analvsis Drocedure Their
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sures atter the completwn of backtlulng were nearer to their at-rest pressures than their
active values, as shown in Figures 14a and 14b. Downdrag forces were computed along
the back of the wall, as was the case for the Duncan and Clough retaining wall analyses
described in paragraph 10. Another observation was that the resulting earth pressures
and deformation of the wall were dependent upon the material parameters assigned to
the backfill, i.e., the value of the stiffness and the value of Poisson’s ratio.

Study by Roth, Lee, and Crandall (1979)

12. Roth, Lee, and Crandall (1979) described backfill placement analysis of an in-
strumented, deep basement wall, using the same finite element procedure as Clough and
inite element mesh used in the analysis is shown in Figure 13a.

(

results in Figure 15d. Good agreement was found between calculated and measured
lateral earth pressures when interface elements were included along the backfili-to-wall
interface. By using interface elements in the finite element analyses of a rigid wall,
they were able to simulate the settlement of the backfill adjacent to the wall, resulting

1
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in the mobilization of a shear force along the back of the wall. In the parametric
analvees. thev found that the value of Poisson’s ratio assiened to the backfill wag the
analyses, they found that the value of Poisson’s ratio assigned to the backfill was the
most important parameter affecting the calculated lateral earth pressure, and the stiff-
PR s [EUPS R R Y aie b T S B BUR P o EERSR Y I P RS B R A GG A o
1ICSS asSSIgNned 10 e DACKIILL 1dd UG INTIUCICC 0N UIC CaiCuldled 1diCrdl pressures.

13. Ebeling et al. (1988) and Ebeling, Duncan, and Clough (1989) describe a series
-~ ALl PG IR it mmetls e ot e L L -
of backfill placement analyses of gravity earth retaining structures of the type shown in
1 Vg 4 1 kg

Figure 16a. The finite element mesh for this wall is shown in Figure 16b. It was shown
during the cdurse of this study that there is an interdependence between wall deforma-
tions and the distribution of both stabilizing and destabilizing forces exerted on the wall
by the fill, and on the base of the wall. The relative distribution of these forces was
found to be dependent upon the size of the wall, its proportion of base to height, the
geometry of the wall, and whether the face along the back of the wall was stepped or
planar. The presence of water also influences the distribution of forces acting on

wall. In addition, the material properties of the backfill, the rock foundation, and the
soil-to-concrete and concrete-to-rock interface regions influenced the computed results.

14. It was observed that for walls of typical geometry, unless there were special
regions with unique material properties that would contribute to significant wall
deformations, the magnitude of the wall movements away from the backfill is very

tion of backfilling for the 40-ft-high by 16-ft-wide wall shown in Figure 16. The
resulting lateral earth pressures for the backfill were closer to their at-rest values
than thais antiva valiine Tha analiene dammnatnatad that sha lha~Alf317 qaselan snmema
tiiall Uil aLllye vaiuc) 11T alldaly>Ted utHlulidiIattu tlial it valiKillii 1CS IHVIC
el o el 11 A A4 1. ~ A Lt P +1 1 o1

than the wall, and develops a downward acting shear stress on the back of the wall,

as shown in Figure 17. The shear stresses were expressed in terms of a resultant
shear force, Fy, acting along the vertical plane. When the backfill is dry, Fy may
in turn be conveniently expressed in terms of the vertical earth pressure coefficient,
Kv , by the following equation:

2

YH (1)

<
[ SO R

Ywiilio

ast
i

height of backfill
unit weight of backfill

shows that Fy decreases to a near zero value at a distance equal to 40 feet,
as measured from the heel of the wall, a distance equal to the height of the wall. This
shear force is a stabilizing force acting on the back of the wall, tending to counter the
lateral earth pressure forces attempting to destabilize the wall. Figure 18 shows the

variation in Ky for walls 40 ft in height and a base width equal to 16 ft but with dif-

ferent wall geometry. Kp is the lateral earth pressure coefficient, the ratio (Be/B) the

~3 =
i

[um—y
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developed along the base and 5mob is the mobilized angle of friction almg the base of
the wall. The presence of this downdrag force provides an explanation for the anomaly

that although existing Corps gravity earth retalmng walls at various US navigation lock
sites have been judged unstable on the basis of current Corps design methods, they are
in fact performing well, without signs of instability.

Results of Finite Element Studies

15. The previously described finite element studies of U-frame locks, basement
walls, and retaining walls led to a number of common conclusions:

a. Modeling procedures yield results closest to observed behavior when the wall
and backfill construction sequences are simulated
b. The model should inciude provisions to account for the nonlinear siress-strain be-

e measamnial anciisrala PUPRL P DIy, Sy R P YEE P,

id in
havior exhibited by SOiiS. Incremental, equivalent linear iechniques have proven

to be quite successful

rarinte Af neniantag

T a vari€ty 01 projccis.

c. Representation of the interface between the structure and the soil is important to
obtain realistic results. The relative movement along the interface must be in-
cluded in the finite element analysis.

6. These finite element analyses shed light on the soil-to-structure interac-
tion in a way not nossxble otherwise. As such, they were very useful. Some of
gs attributed to the finite element analyses of the earth
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a. The finite element analysis can capture the interdependence between wall defor-
mations and the distribution of both stabilizing and destabilizing forces exerted
on the base of the wall and on the wall by the backfiil.

b. Finite element analysis of wall-backfill systems can represent conditions from at-
rest to the limit states.
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backfill.
17. An additional complication in the soil-to-structure interaction analysis of walls
_____ o tha £12en alacanns smanthad AL anmalugt 1 ¥
using the finite element method of analysis is the situation where the earth and/or water

loads acting on the structures are so great that a gap deve
Fe ] 1 o

tween the base of a wall and its foundation. When interface elements are used to model
the interface between the wall and its foundation, the inability to prevent the interface
elements from assuming stresses higher than the allowable values becomes a problem.
This is termed “overshoot.” Although the overshoot error in any one element may be
small, the error can accumulate, potentially leading to unsatisfactory results. Numeri-
cal procedures have recently been developed to resolve this problem and will be

.
reviewed in the next
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concerned with ioss of contact between the base of a waii and its foundation. This situa-
tion arises when structures are loaded so heavily that a gap develops within the inter-
face region. Two analytical approaches have been used to analyze this type of problem;
one procedure involves the modelling of a predetermined plane along which separation
is prcsumedQ to develop using interface elements and the second analytical procedure in-
volves the use of concepts associated with fracture mechanics. Both procedures in-

volve the use of the finite element method of analysis to determine the response of a
structure to earth and water loadinogs. deccribed in termes of the chanoe in dignlacemente
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interface elements. uesa, lVllS[I'y, and Patel

85) and Herrmann (1978) describe the development of procedures for modeling the
loss of contact between a strip footing and the soil foundation, when the footing is sub-
jected to an eccentric vertical load. In both analyses, the soil was modeled as an elastic
continuum. In the study by Ebeling et al. (1988) a similar model was developed and
used in the analysis of earth retaining structures.

norg

1€ problem studied by Desai, Misiry, and Paiel (1985) a sirip footing, resting
on the surface of an overconsolidated ciay, was subjected to a singie eccentric vertical
load. The finite element mesh for this problem is shown in Figure 19a. Interface ele-
ments were included between the footing and the soil. The formulation of the interface
element was based on the same constitutive relationships as those used by Goodman,
Taylor, and Brekke (1968). The procedure of analysis was one of successive iterations
for each eccentric vertical load applied to the footmg An elastic analysis was initially
performed with the assumption that the soil-to-foot
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centric ioad using the updated stlttnesses. When all active interface elements were
found to be in compression, an elastic solution to the problem was reached. The result-
ing distribution of normal stresses is shown in Figure 19b and labelled loss of contact.
In the problem analyzed by Desai, Mistry, and Patel (1985) it was observed that the
ability to model the loss of contact resulted in: (a) an increased maximum contact com-
pressive stress, (b) an increase in the rotation of the footing, and (c) an increase in the

10



bending moments developed within the footing, as compared to the results from the con-
ventional elastic continuum and spring bed models for soil behavior. It is important to
note that the Droblem for whlch this Drocedure was develoned does not mclude shear

21. The problcm studied by Herrmann (1978) was similar to that described pre-
viously of a rigid footing resting on an elastic foundation with interface elements be-
tween the two regions. The algorithm used for this interface element was very similar to
that for interface elements developed by Goodman, Taylor, and Brekke (1968), but with
additional constraint conditions introduced. This bond-link interface element uses
equivalent shear and normal springs at the nodes and allows slip and/or separation to

C

develop. Like Desai’s, the procedure was one of successive iterations for each ec-
centric vertical load applied to the footing, checking for compatibility and equilibrium
along the interface region. The results for the analysis of the problem of a rigid footing
on an elastic foundation indicated that for a given value of 1oad, the rotation of the foot-
ing increased in proportion to the eccentricity of the load, as shown in Figure 20. How-

ever, once uplift occurred, the rotation of the footing 1ncreased in a nonlinear manner
with increased eccentricity in the applied load.

i

evaluatlon of an earth retaining structure loaded so heavny that a gap develops along
the base, the ability to model the loss of contact along the base would be an important
feature. This is due to the fact that base separation influences both the magnitude of
the computed wall rotation and, therefore, the resulting earth pressures acting on the
wall.

23. Due to the interreiationship between wall movements and the distribution of both
stabilizing and destabilizing forces exerted on the wall by the fill, a procedure for
modelling the loss of contact was developed by Ebeling et al. (1988). The procedure,
referred to as the Alpha method, was implemented within the framework of the in-
cremental, equivalent linear backfill placement analysis procedure discussed in para-
graph 3. During the course of the incremental analysis, each interface element along
the base of the wall is checked for the development of tensile stress at its center. If

none are found, the backfill nlacement analysis proceeds as ust aL When tensile stress-
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applied incremental load vect tl
each of the interface elements which previously developed tensile stress at its center,
(b) make the interface stiffnesses equal to zero, (c) convert the shear stress regime into
an equivalent set of nodal point forces, (d) transfer this equivalent force into adjacent
elements by applying it as an external force at the nodes, and (e) maintain equilibrium
by subtracting the equivalent internal stress from within the interface element(s) used to

formulate this force. The procedure is repeated until the total initial load increment has

[a—
ek



been applied. The name given to this method is derived from the factor applied to the
incramental 1aad vector “Alnha ”
ALIVIVIIIVILILAL 1VAM YuvLvilUL, l\;yuu

24. The accuracy of the Alpha method is best shown by comparing the results using
an incremental method of analysis to the results from the Alpha method. The wall
analyzed, shown in Figure 21a, is 40 ft high and 16 ft wide at the base and founded on
competent rock. The wall was loaded by three basic force components. The first in-
volves the vertical loads induced by the weight of the monolith and the weight of back-

n

S 15t avh
S

fill above the heel of the wall. The second component is the lateral stress assumed to
be generated by the soil backfill and the hydrostatic water in the backfill (Hy = 27 ft).
The thud 1eadng is the upward pressure acting on the base of the wall generated by
1 10, ™ TYay a1 12 1 111
11IT. 1N€ gI'dVl[y 10 dcung IS appuea IlI'S[ 110WEa Dy appucatlon

lateral and uplift pressures in 10 load increments shown in Figure 21a. The finite ele-
ment mesh for the structure is shown in Figure 21b. In both finite element analyses, the
gravity loads are applied first, followed by the 10 increments of loading. When tensile
stresses are sensed in an interface element during any incremental finite element
analysis, the normal and shear stiffnesses are set equal to zero in the interface element
and the incremental analysis proceeds with the next load increment. Base separation is

assumed to have occurred within this interface element. However, since the loading is
discrete, the stress within that mterface element may not be exactly zero, which is the

25. The resulting normal and shear stress distribution along the base of the wall,
upon completion of the earth pressure loading (load case S in Figure 21a), is shown in
Figure 22. Both Drocedures indicate that a zao has developed along the base of the wall
by this stage of load but its magnit
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[ZD) lung a 11110(1[ VUIIIPICDDIVC stress a A LIIUULIUH, Dc lb comipuicud 0 UC <. D I[. 1ne diI-
f rence in the finite element results is attributed to the numerical inaccuracies intro-
duced during the course of the analysis by the particular base separation model used.
These numerical inaccuracies are introduced as the criteria for deciding when each inter-
face element has simulated the development of a gap is implemented.

26. When a gap develops during the course of loading of a wall, no forces are trans-
£, d alaong tha canarated reginon af the hace SQinpee the lasdinse ave of Faita maocnitinde
ierrea aiong tne separatea region oOf the base. JSince tne 1oaaings are of finite magnitude

2 1

£}
-

1 1

in an incremental finite element analysis, the developed stresses within the gap are
never exactly equal to zero, as discussed in paragraph 22. Thus, the accuracy of a base
separation model may be assessed by converting the residual stress distribution along
the gap into an equivalent force, both normal and shear, and comparing its magnitude to
the total forces acting on the base. These equivalent forces are obtained by integrating
the normal and shear stress distributions within the interface elements which have
separated. An exact base separation model would have zero net normal force, AN,
and shear force, AT , retained within the interface elements com

overshoot forces, normahwr1 by the total normal and shear forces acting on the base,
are shown in Figure 23 for each increment of loading. This figure shows that the Alpha



27. A second measure of error in a base separation analysis reflects the influence
which the overshoot normal force has on the distribution of normal force for those inter-
face elements remaining in compression. In Figure 24a, the location of the resultant
normal force for the region in compression as computed by the finite element analyses
is compared to that of the conventional equilibrium analysis. If the locations are in

agreement, the results would nlot on the diagonal line through the figure. It is observed
greement, the results woul d plot on the diagonal line through the figure. It is observed
that as the loading increases, and the location of the resultant normal force moves
towards the toe, the error in the computed point of action in the incremental finite ele-

1 T -~ 1. e les Lo oL . AT L. L 1 LR ] )
ment dnaIYSIS ln(,reases inc IeSults 1101 LIC AlpIld MCL0d agree witn tne

ntrast, tnhe 1
quilibrium anaiysis.
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ments in UIC mcrcmema C

Be values computed using the Alpha method are virtually the same as those obtained
using the conventional force equilibrium method of analysis and assuming a linear com-
pressive stress distribution. The value of Be , or conversely, the computed length of
the gap (B - Be), would directly influence the magnitude of uplift pressures applied
along the base during the course of the stability evaluation of the wall when water is
present in the backfill.
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29. In a complete soil-to-structure interaction analysis, the soil backfill would be rep-
resented in the finite element mesh and the ioadings on the wall developed through the
interaction between the soil and the wall during backfilling, as summarized in para-
graph 13. The ability to accurately model the development of a gap during the course
of loading would have implications on the stresses developed along the base, the result-
ing wall displacements, and, therefore, the earth pressures acting on the wall.

Base Separation Analyses Using Fracture Mechanics Concepts

30. A second procedure for modelling the development of a crack at the base of an
earth retaining structure in a soil-structure interaction analysis involves the use of con-
cepts assoc1ated with fracture mechanlcs In general, fracture mechanics relates the
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upiift pressures were assumed

-
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ft in front of t
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under the separated region of the base and a linear uplift distribution was assumed

under the compression area.

1

.

aximum bearing pressures were
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33. A linear elastic fracture mechanics (LEFM) analysis was performed for a cr

indicative of a stable structure.

interface between th

along the

.

'L

1ne compuied crest displacements were small.

[a ol

in compression.

in. These computed

09

.

0

kfill was

~

1

Lateral movement of the crest away trom the bac

¥

results clearly indicate a stable structure.

retaining structures are quite sensitive to both

.

©
I

he development of a crack within a structure and the

.

~

1

1

1

ihe modei used for computing

21

presence of water within the crack.
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PART IV: CONCLUSIONS

35. The analyses discussed in this report show the importance of simulating a tual
S

construction processes as closely as pos ssible in a finite element analysis. Soi 1 backfi
and interface elements should be included in the finite element mesh. In addition. the
@ii1U HItC11QV0 CICIIICIILS S5iiUVWIU UL LIIVIMUUAL 1211 AT 2482210 CICIIICA 14i0siL. 111 addil 1VUL ‘, 1§ i+
analueic chanld anrmint far tha nanlinaar ctrace_ctrain hahaviar nf tha cenil
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36. Three types of base separation models have been discussed in this report, the
first based upon the use of interface elements to model the presumed path of the crack,
the second based upon the use of fracture mechanics, and the third based upon the con-
ventional force equilibrium method of analysis with an assumed linear compressive

£

stress distribution. The retaining wall analyses show the importance of us ing an ap-

2 - 222y 2 all all 4111P70ULL 111
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Figure 2. Structural deflections for Case III - Port Allen Lock

(Clough and Duncan 1969)
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Figure 13. Wall modeled section and finite element mesh
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